Train & Log a Custom Xgboost Model
Train and Log a Custom built Xgboost Model with Katonic-SDK Log package.
Import necessary packagesโ
import os
import pandas as pd
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, roc_auc_score, log_loss, recall_score, f1_score, precision_score
from katonic.log.logmodel import LogModel
Define Experiment nameโ
experiment_name= "custom_xgb_model"
Initiate LogModel with experiment nameโ
lm = LogModel(experiment_name, source_name='xgboost_model_logging.ipynb')
Check Metadata of the created / existing experimentโ
# experiment id
exp_id = lm.id
print("experiment name: ", lm.name)
print("experiment location: ", lm.location)
print("experiment id: ", lm.id)
print("experiment status: ", lm.stage)
Artifact path where you want to log your modelโ
artifact_path = "xgb-model"
Load Training Dataโ
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/diabetes.csv')
df.head()
Get Features and Labelsโ
x = df.drop(columns=['Outcome'], axis=1)
y = df['Outcome']
Split the dataset in Train and Testโ
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=.20,random_state=98)
Define Evaluation Metricsโ
def metric(actual, pred):
acc_score = accuracy_score(actual, pred)
recall = recall_score(actual, pred)
precision_scr = precision_score(actual, pred)
f1_scr = f1_score(actual, pred)
auc_roc = roc_auc_score(actual, pred)
log_los = log_loss(actual, pred)
return (
acc_score,
auc_roc,
log_los,
recall,
f1_scr,
precision_scr
)
Train Xgboost Modelโ
model_clf = XGBClassifier(random_state=0)
model_clf.fit(X_train, y_train)
Calculate metrics for the Xgboost modelโ
y_pred = model_clf.predict(X_test)
(acc_score, auc_roc, log_los, recall, f1_scr, precision_scr) = metric(y_test, y_pred)
model_mertics = {
"accuracy_score": acc_score,
"roc_auc_score": auc_roc,
"log_loss": log_los,
"recall": recall,
"f1_score": f1_scr,
"precision_score": precision_scr
}
Log Xgboost Modelโ
You can log your Xgboost model by defining the model_type
param as xgboost
from available model types scikit-learn
, xgboost
, catboost
, lightgbm
, prophet
, keras
, custom-model
.
lm.model_logging(
model_name="xgboost",
model_type="xgboost",
model=model_clf,
artifact_path=artifact_path,
current_working_dir=f'{os.getcwd()}/xgboost_model_logging.ipynb',
metrics=model_mertics
)
Check all the logged Experimentsโ
You can search and get all the logged models with specific experiment ID.
df_runs = lm.search_runs(exp_id)
print("Number of runs done : ", len(df_runs))
df_runs.head()