Log a sklearn Model
Train & Log a Custom Scikit-Learn Model with Katonic-SDK Log package.
Train and Log a Custom built Scikit-Learns Model with Katonic-SDK Log package.
Import necessary packagesโ
import os
import pandas as pd
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, roc_auc_score, log_loss, recall_score, f1_score, precision_score
from sklearn.linear_model import LogisticRegression
from katonic.log.logmodel import LogModel
Define Experiment nameโ
experiment_name= "sklearn_model"
Initiate LogModel with experiment nameโ
lm = LogModel(experiment_name, source_name="scikit_learn_logging.ipynb")
Check Metadata of the created / existing experimentโ
# experiment id
exp_id = lm.id
print("experiment name: ", lm.name)
print("experiment location: ", lm.location)
print("experiment id: ", lm.id)
print("experiment status: ", lm.stage)
Artifact path where you want to log your modelโ
artifact_path = "scikit-learn-model"
Read data for trainingโ
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/diabetes.csv')
df.head()
Get Features and Labelsโ
x = df.drop(columns=['Outcome'], axis=1)
y = df['Outcome']
Split the dataset in Train and Testโ
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=.20,random_state=98)
Define Evaluation Metricsโ
def metric(actual, pred):
acc_score = accuracy_score(actual, pred)
recall = recall_score(actual, pred)
precision_scr = precision_score(actual, pred)
f1_scr = f1_score(actual, pred)
auc_roc = roc_auc_score(actual, pred)
log_los = log_loss(actual, pred)
return (
acc_score,
auc_roc,
log_los,
recall,
f1_scr,
precision_scr
)
Train Random Forest Modelโ
model_clf = RandomForestClassifier(max_depth=2, random_state=0)
model_clf.fit(X_train, y_train)
Calculate metrics of the Random Forest modelโ
y_pred = model_clf.predict(X_test)
(acc_score, auc_roc, log_los, recall, f1_scr, precision_scr) = metric(y_test, y_pred)
model_mertics = {
"accuracy_score": acc_score,
"roc_auc_score": auc_roc,
"log_loss": log_los,
"recall": recall,
"f1_score": f1_scr,
"precision_score": precision_scr
}
Log Random Forest Modelโ
lm.model_logging(
model_name="random_forest",
model_type="scikit-learn",
model=model_clf,
artifact_path=artifact_path,
current_working_dir=f'{os.getcwd()}/scikit_learn_logging.ipynb',
metrics=model_mertics
)
Train Logistic Regression Modelโ
model_clf = LogisticRegression(random_state=0)
model_clf.fit(X_train, y_train)
Calculate metrics of the Logistic Regression modelโ
y_pred = model_clf.predict(X_test)
(acc_score, auc_roc, log_los, recall, f1_scr, precision_scr) = metric(y_test, y_pred)
model_mertics = {
"accuracy_score": acc_score,
"roc_auc_score": auc_roc,
"log_loss": log_los,
"recall": recall,
"f1_score": f1_scr,
"precision_score": precision_scr
}
Log Logistic Regression modelโ
Note: When you are logging models supported by scikit-learn, please use scikit-learn as model_type.
lm.model_logging(
model_name="logistic_regression",
model_type="scikit-learn",
model=model_clf,
artifact_path=artifact_path,
current_working_dir=f'{os.getcwd()}/scikit_learn_logging.ipynb',
metrics=model_mertics
)
Train Adaboost Modelโ
model_clf = AdaBoostClassifier(random_state=0)
model_clf.fit(X_train, y_train)
Calculate metrics of the Adaboost modelโ
y_pred = model_clf.predict(X_test)
(acc_score, auc_roc, log_los, recall, f1_scr, precision_scr) = metric(y_test, y_pred)
model_mertics = {
"accuracy_score": acc_score,
"roc_auc_score": auc_roc,
"log_loss": log_los,
"recall": recall,
"f1_score": f1_scr,
"precision_score": precision_scr
}
Log Adaboost modelโ
lm.model_logging(
model_name="adaboostclassifier",
model_type="scikit-learn",
model=model_clf,
artifact_path=artifact_path,
current_working_dir=f'{os.getcwd()}/scikit_learn_logging.ipynb',
metrics=model_mertics
)
Train Gradient Boost Modelโ
model_clf = GradientBoostingClassifier(random_state=0)
model_clf.fit(X_train, y_train)
Calculate metrics of the Gradient Boost modelโ
y_pred = model_clf.predict(X_test)
(acc_score, auc_roc, log_los, recall, f1_scr, precision_scr) = metric(y_test, y_pred)
model_mertics = {
"accuracy_score": acc_score,
"roc_auc_score": auc_roc,
"log_loss": log_los,
"recall": recall,
"f1_score": f1_scr,
"precision_score": precision_scr
}
Log Gradientboost modelโ
lm.model_logging(
model_name="gradientboostclassifier",
model_type="scikit-learn",
model=model_clf,
artifact_path=artifact_path,
current_working_dir=f'{os.getcwd()}/scikit_learn_logging.ipynb',
metrics=model_mertics
)
Check all the logged Experimentsโ
You can search and get all the logged experiments with experiment ID.
df_runs = lm.search_runs(exp_id)
print("Number of runs done : ", len(df_runs))
df_runs.head()